Table 1-1. Specifications.

FUNCTIONS ANDFREQUENCIES

Sine Wave
Signal Output (Front or Rear Panel): 0.000001 Hz to 20999999.999 Hz

Auxiliary Output (Rear Panel): 21000000.000 Hz to 60999999.999 Hz Underrange to 19000000.001 Hz

Square Wave: 0.000001 Hz to 10999999.999 Hz
Triangle: 0.000001 Hz to 10999.999999 Hz
Positive and Negative Slope Ramp:
0.000001 Hz to 10999.999999 Hz

FREQUENCYRESOLUTION

1 nHz for frequencies below 100 kHz
1 mHz for frequencies 100 kHz and higher

FREQUENCY ACCURACY (Standard Instrument)

$$
\pm 5 \times 10^{6} \text { of selected value }\left(20^{\circ} \text { to } 30^{\circ} \mathrm{C}\right)
$$

FREQUENCY STABILITY (Standard Instrument)

$$
\pm 5 \times 10^{6} \text { per year }\left(20^{\circ} \text { to } 30^{\circ} \mathrm{C}\right)
$$

SIGNALCHARACTERISTICS

Sine Wave:

Harmonic Distortion relative to the amplitude of the fundamental frequency at full output on each range

Fundamental Frequency	No Harmonic Greater Than
0.1 Hz to $50 \mathrm{kHz} \mathrm{50kHz}$	-65 dB
to 200 kHz 200 kHz to 2	-60 dB
MHz	-40 dB
2 MHz to 15 MHz 15	-30 dB
MHz to 20 MHz	

Spurious: All non-harmonically related output signals will be more than 70dB below the carrier (-60dB with DC offset), or less than -90 dBm , whichever is greater.
Phase Noise: > -60dB (Option 001 Only) for a 30 kHz band centered on a 20 MHz carrier (excluding $\pm 1 \mathrm{~Hz}$ about the carrier).
Square Wave:
Rise/Fall Time: s 20 nanoseconds, 10\% to 90% at full output

Symmetry: <, .02\% of period + 3 nanoseconds
Overshoot: s 5% of peak to peak amplitude at full output
Triangle:
Linearity, 10% to 90%, best fit straight line:
$\pm 0.05 \%$ of full $p-p$ output for each range
Ramps (Positive or Negative Slope):
Linearity, 10% to 90%, best fit straight line: $\pm 0.05 \%$ of full p -p output for each range

Retrace Time: <, 3 microseconds, 90% to 10%
Ramp Period Variation: < $\pm 1 \%$ of period, maximum

AMPLITUDE
Amplitude Accuracy with no Attenuation (Attenuator range 1) into 50 ohm Load. (No D.C. offset)

Function and Tolerance relative to programmed frequency range amplitude

Sine Wave .001 Hz to 100 kHz	
Square Wave .001 Hz to 100 kHz	$\pm 0.1 \mathrm{~dB}$
Triangle .001 Hz to 2 kHz 2 kHz to 10 kHz	$\pm 1.0 \%$
Ramps .001 Hz to 500 Hz 500 Hz to 10 kHz	$\pm 1.5 \%$
$\pm 5 \%$	

Flatness with no attenuation Tolerance relative to programmed (Attenuator Range 1) into a amplitude at 1 kHz 50 Ohm load

Sine Wave 100 kHz to 20 MHz	$\pm 0.3 \mathrm{~dB}$
Square Wave 100 kHz to 10 MHz	$\pm 10 \%$

Amplitude accuracy with D.C. Tolerance relative to offset and no attenuation (Range 1) into a 50 ohm load.

Sine Wave .001 Hz to 100 kHz	
Square .001 Hz to 100 kHz	$\pm 0.3 \mathrm{~dB}$
Triangle .001 Hz to	$\pm 3 \%$
2 kHz 2 kHz to 10 kHz	$\pm 4 \% \pm$
Ramps .001 Hz to 500 Hz 500 Hz to 10 kHz	

Attenuator Accuracy (these Tolerance relative to errors are additive with the programmed amplitude. amplitude accuracy errors)

.001 Hz to 20 kHz Attenuator Range 1	No Error
.001 Hz to 100 kHz Attenuator ranges 2 through 8	$\pm 0.1 \mathrm{~dB}$
100 kHz to 10 MHz Attenuator ranges 2 through 8	$\pm 0.2 \mathrm{~dB}$
10 MHz to 20 MHz Attenuator ranges 2 through 4 Attenuator ranges 5 through 8	$\pm 0.2 \mathrm{~dB} \pm$

Table 1-1. Specifications (Cont'd).

Accuracy of DC Offset (into 50 ohms):
DC Only (No AC Function): $\pm 0.4 \%$ of full peak output for each range*
"Except lowest attenuator range wheie accuracy is ± 20 /!V.

```
DC + AC, <, 1MHz: }\pm1.2%,Ramps \pm2.4% DC +
```

AC, > $1 \mathrm{MHz}: \pm 3 \%$ AMPLITUDE MODULATION (of Sim

Function only)

Modulation Envelope Distortion: -30 dB to 80% modulation at $1 \mathrm{kHz}, 0 \mathrm{~V}$ dc Offset

PHASE OFFSET

Range: $\pm 719.9^{\circ}$ with respect to arbitrary starting phase, or assigned zero phase

Resolution: 0.1° Stability: $\pm 1^{\circ}$
phase $/{ }^{\circ} \mathrm{C}$ Increment Accuracy:
$\pm 0.2^{\circ}$ PHASE MODULATION
Linearity (Sine Function): $\pm 0.5 \%$, best fit straight line

SYNC OUTPUT

Output Levels into 50 ohms: Square wave with V.. .

$$
\mathrm{a}+1.2 \mathrm{~V}, \mathrm{~V}, \quad<+0.2 \mathrm{~V}
$$

$$
\text { nigh } \quad, \quad \text { low }
$$

X DRIVE OUTPUT

Amplitude: 0 to +10 V dc linear ramp proportional to sweep frequency (sweep up only)

Linearity, 10% to 90%, best fit straight line: $\pm 0.1 \%$ of final value. Specified for all linear sweep widths which are integral multiples of the minimum sweep width for each function and sweep time.

OPTION 001

HIGH STABILITY FREQUENCY REFERENCE

Ambient Stability: $\pm 5 \times 10^{\prime \prime 8}\left(0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$ referenced to $\left.+30^{\circ} \mathrm{C}\right)$

Aging Rate: $\pm 5 \times 10^{\prime \prime 8}$ per week (after 72 hours continuous operation) $\pm 1 \times 10^{17}$ per month (after 15 days continuous operation)

OPTION 002

HIGH VOLTAGE OUTPUT

Frequency Range:
Sine and Square Wave: $1>\mathrm{iHz}$ to 1 MHz
Triangle and Ramps: $1 / » \mathrm{~Hz}$ to 10 kHz

Amplitude:

Range: 4 mVp -p to $40 \mathrm{Vp}-\mathrm{p}$ (a 5000, < 500pF load)
maximum output current, $\pm 40 \mathrm{~mA}$
Accuracy (at 2 kHz): $\pm 2 \%$ of full output for each range

Flatness: $\pm 10 \%$ of programmed amplitude

DC Offset:

Range: 4 times the range of the standard instrument
Accuracy: \pm ($1 \%-\mathrm{I}-25 \mathrm{mV}$) of full output for each range

Signal Characteristics:
Sine Wave Harmonic Distortion (relative to the fundamental frequency at full output into >500 ohms, <500 pF)

Fundamental Frequency	No Harmonic
	Grantor ${ }_{-65} \mathrm{~dB}$ an
10 Hz to 50 kHz 50 kHz	-60 dB
to 200 kHz 200 kHz to 1	-40 dB
MHz	d

Square Wave:
Rise/Fall Time: <. 125 nanoseconds, 10\% to 90% at full output with 2: 500 ohm, < BOOpF load

Overshoot: <10\% of peak amplitude with a: 500 ohm, < 500 pF load

Table 1-2 Supplemental Information

Table 1-2. Supplemental Information (Cont'd).

Ramps
 0.01 mHz
 99.99 mHz

Minimum Sweep Width (Log): 1 decade
Phase Continuity: Sweep is phase continuous over the full frequency range

WIARMMI IPTIMAF

Standard Instrument: 20 minutes to within specified accuracy
Option 001 High Stability Frequency Reference: Reference will be within $\pm 1 \times 10^{7}$ of final value 15
minutes after turn-on at $25^{\circ} \mathrm{C}$ for an off time of less than 24 hours

AUXILIARY INPUTS (May be floated a maximum of $\pm 42 \mathrm{~V}$ peak lac + del from chassis learthl ground)

Reference: For phase-locking the 3325A to an external frequency reference of 10 MHz or a subharmonic of 10 MHz down to 1 MHz . Level must be 0 dBm to 4 20 dBm into 50 ohms. Rear panel BNC connector.

Auxiliary Frequency Output (ac coupled output):
Frequency Range: 21 MHz to 60.999999999 MHz ,
with underrange coverage to 19.000000001 MHz Amplitude: 0 dBm

Output Impedance: 50 ohms
Connector: Rear panel BNC

1 MHz Reference Output (for phase-locking other instruments to 3325A):

Amplitude: 0 dBm
Output Impedance: 50 ohms
Connector: Rear danel BNC
Marker Output (Linear sweep only):
Levels: High to Low TTL compatible voltage transition at selected marker frequency, sweep up only.

Connector: Rear panel BNC

Table 1-2. Supplemental Information (Cont'd).

```
X Drive Output (Sweep up only):
    Amplitude: 0 to + 10 V linear ramp
    proportional to sweep frequency
    Connector: Rear panel BNC
Z Blank Output:
    Levels (TTL compatible voltage levels):
        Linear Sweep:
            Single: Low at start of sweep, High at stop. Re-
            mains High until start of next sweep.
            Continuous: Low during sweep up. High during
            sweep down.
        Log Sweep:
            Single: Low at start of sweep, High at stop. Re-
            mains High until start of next sweep.
            Continuous: Low during sweep. Goes
            High momentarily at stop frequency.
```

10 MHz Oven Reference Output, Option 001, for phase
locking the 3325A to the optional high stability frequency
reference:
Amplitude: $0 \mathrm{dBm}, 50$ ohms
Connector: Rear panel BNC. Must be connected to
the rear panel EXT REF IN connector.

REMOTE CONTROL

Hewlett-Packard Interface Bus (HP-IB) Control: (HP-IB is Hewlett-Packard Company's implementation of IEEE Standard 488-1978). Time shown is in addition to programming time.

Frequency Switching and Settling Time:*
$<10 \mathrm{~ms}$ to within 1 Hz of final value for 100 kHz span
$<25 \mathrm{~ms}$ to within 1 Hz of final value for 1 MHz span
$<70 \mathrm{~ms}$ to within 1 Hz of final value for 20 MHz span
Phase Switching and Settling Time:*
$<15 \mathrm{~ms}$ to within 90° of phase lock for 20 MHz fre quency change

Amplitude Switching Time:"
$<30 \mathrm{~ms}$ to within amplitude specifications
"Times shown are in addition to programming time
GENERAL
Operating Environment:
Temperature: 0° to $55^{\circ} \mathrm{C}$
Relative Humidity: $<95 \%, 0^{\circ}$ to $40^{\circ} \mathrm{C}$
Altitude: s $15,000 \mathrm{ft}$.
Storage Temperature: -50° to $+75^{\circ} \mathrm{C}$
Storage Altitude: <; 50,000 ft.
Power Requirements:
100/120/220/240V+5\%,-10\%,48 to 66 Hz 60
VA, 100 VA with all options, 10 VA standby
Dimensions in millimeters and (inches):
$132.6 \quad\left(5^{\prime} / 4 \mathrm{I}\right.$ high $\mathrm{x} \quad 425.5$ (16\%) wide
$\times \quad 497.8(19-5 / 8)$ deep
Weight in kilograms and (ibs):
Net weight: 9(20) Shipping
Weight: 14.5 (32)

119. ACCESSORIES AVAILABLE.

1-20. The following accessories are available for use with the Model 3325A:

Number Description

11048C 50 ohm Feedthru Termination Ground
11356A Isolator
03325-80001 Oven Board Assy. (Converts 3325A to Option 001)
03325-80002 High Voltage Option (Converts 3325A to Option 002)
5061-0077 Rack Mount Flange Kit (Option 908)
5061-0083 Rack Mount Flange/Front Handle Kit (Optibn 909)
5061-0089 Front Handle Kit (Option 907)

